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Some aspects of Wiener—-Hopf factorization

By Davip WiLLiamMs

Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 18B, U K.

Wiener-Hopf factorization means many apparently different things, both in theory
and in its wide variety of applications. This paper is designed so that almost all of
it may be read by non-probabilists, though it makes demands on the reader’s ability
to use analogy. It is written in response to requests from people in other fields to give
some idea of what probabilists are doing. It gives some reformulations of the
probabilistic Wiener—-Hopf problem studied by London et al. One reformulation as a
problem of simultaneous reduction of quadratic forms is used to motivate another as
a Riemann—Hilbert problem. In addition to trying to synthesize various results, it
answers affirmatively a question of McGregor as to whether a useful convolution
formula which he obtained in a special case holds generally. Section 4 on examples,
methods, and their interrelations is the liveliest part of the paper. Though algebra
and complex analysis are successful and link perfectly with probability in much of
what has so far been achieved, the scope of these methods is very severely limited,
and much more challenging problems lie ahead. Motivation for this study derives
originally from the practically important fact that integrals of Markov processes
often provide better models than Markov processes themselves; but it has obvious
pure-mathematical ‘rightness’ too.
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1. An algebraic result

Let E be a finite set, and let £ = E* U £~ be a disjoint partition of £ such that
neither £~ nor E* is empty. Let V:E - Rbe such that V> 0on E*and V< Oon £~.
We shall also use V to denote the diagonal K xE matrix diag(V;:¢€E) which
represents multiplication by the function V. Let ¥~ be the vector space of real
functions (vectors) on £ and let ¥ be the corresponding space for £*. Let m be a
measure on K with m, = m({i}) > 0 for every ¢ in E. Introduce the standard inner

product

L= 2 figimy
_ el
— on ¥ (We write ‘:=" for ‘is defined to equal’.)
§ S Let Q be an K x E matrix which is a strict sub-@-matrix on ¥ in that
of 45 >0 ((#)). =T g;<0 (Vi)
Dﬁ a jeE
E O Suppose further that @ is m-symmetrizable in that
= 8 My Gy = My gy V(5,),
<2 so that @ is self-adjoint for (-, ->. The Dirichlet form (‘energy integral’)
=0 8(f.9):=—<f. Qg (L.1)
85 W Phil. Trans. R. Soc. Lond. A (1991) 335, 593-608
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594 D. Williams

defines a proper inner-product on ¥~ since
E(f.f) =32 EZm;qy(fi—f) —Zm, 0. fF.
i) i
If we allowed each 4, to equal 0, and we shall later do this for the ‘continuous’

analogue, then & would be non-negative definite with &(1,1) = 0 for the constant
function 1.

Theorem. 1. There is one and only one way of finding (i) an isomorphism
folfuf) from VoK@V

such if f- = 0 then f, = f*, where f* denotes the restriction of f to E*, and (ii) proper
inner products -, ), and &, on ¥, such that

Vg =Lfugr—<fo g0, (1.2)
and E(f.9) =E(fr9)+6(f_.9). (1.3)

2. There exist strictly substochastic (componentwise non-negative, with row sums less
than 1) B x E* matrices IT* such that, if I* denotes the identity E* x B+ matriz, then

(I m\(f.
1= F)5) ren (14)
Moreover, IT" and II- are |Vim adjoint: for ic B~ and je E*,
Vil 1T}, = |Vi{m, IT;;. (1.5)

3. There exist strict sub-Q-matrices G* on E=*, self-adjoint relative to -, ) ., such
that

E(f*.9%) =—{f*. G5 ), (1.6)
whenever f*,g9* €V, and that
(V_le)i=iGifi, fEV (17)
4. The following Wiener—Hopf factorization of V'@ holds :
rrom\t__ (It I\ _(G" 0
(e 1) eln )0 %) ()

Results (1.2) and (1.3) exhibit the problem as one with which we are very familiar
from early courses in applied mathematics, that of simultaneous reduction of two
quadratic forms, one of which is positive-definite; but, of course, we have much
additional structure here.

Though (1.6) is in one sense a ‘Dirichlet form’ expression analogous to (1.1), the
inner product on the right-hand side is of course not a standard L? product. Indeed,
for f*,g* €Y, we have

<f+’g+>+ = <f+’ (I+_H—H+)g+>|Vm|+’ (19)
where SR Dwme = Z fihlVIm,.
jeE*

For probabilistic interpretation of the fact that G is self-adjoint relative to the
(', * ), inner product, see forthcoming work by Joanne Kennedy. In terms of algebra,

Phil. Trans. R. Soc. Lond. A (1991)
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Some aspects of Wiener—Hopf factorization 595

the -, -, self-adjointness of G* is equivalent to (1.5), and (1.5) is algebraically
trivial. But in more general contexts within probability, the analogue of result (1.5)
is intuitively obvious but difficult to prove.

2. Proof of Theorem 1
(@) A uniqueness result

Suppose that an isomorphism as at Part 1 (i) of the theorem and inner products as
at Part 1(ii) exist so that (1.2) and (1.3) hold. Let G* be the negative-definite self-
adjoint (relative to -, ->,) E* x E* matrix such that (1.6) holds.

Suppose that A is an eigenvalue (necessarily real) of G*, so that A < 0; and let A"
in ¥/ denote a corresponding (real) eigenvector. Let g correspond to (A", 0) under our
isomorphism, so that

g.=g"=»h", g_=0.
Then, for any fin ¥~

{fidVg)y = <f+>/\g+>+ ={fr. G,
=—8Lf1.9.0 =—&(f.9) ={f.Qg>,

whence AVg = @y, so that A is an eigenvalue of V'@ with corresponding eigenvector
g. From what has just been proved and the corresponding ‘minus’ result, it follows
that V7'Q has enough eigenvectors to span ¥ It also follows that if g in ¥ is an
eigenvector of V7'Q corresponding to a real eigenvalue A <0, then g* =g, is an
eigenvector for G* with eigenvalue A, g_ = 0, and for any fin %

A frsg04 = —6(f.9).

The uniqueness assertion of Part 1 of the theorem now follows.
We now turn to the ‘existence’ proof, and though we have to start again from
scratch, we can watch the structure just discovered emerge from the probability.

(b) Use of probability
Non-probabilists need only browse in this subsection and the next. Indeed, they
can just jump to §2d below.
Let X be a Markov chain on £ with @-matrix Q. Let P’ denote the probability law
of X when X starts at ¢. Define

t
(pt:=f V(X,)ds, 7#:=inf{u:+q, >, (2.1)

0
and for ie £~ and je B, define the ‘half-winding probabilities’:
I = P{X(15) = j}, ;= PHX (1) = i}. (2.2)

The ‘half-winding’ terminology is natural if one studies the phase picture (p, X) (see
McKean 1963). The process {X(7}):¢t = 0} is a Markov chain on £*; let G* denote its
@-matrix. (NB. The chains X, X*, X~ all have finite lifetimes. If you wish to give them
decent burial, adjoin a coffin state d and be sure to extend functions f on £ by making
f(0)=0.,)

The Wiener-Hopf factorization (1.8) holds without any symmetrizability
assumption (see Barlow et al. 1980). That the whole of the theorem now follows can
in principle be gleaned from London et al. (1982b), but (mea culpa!) the treatment

Phil. Trans. R. Soc. Lond. A (1991)
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596 D. Williams

there is confusing and misses Parts 1 and 3 of our theorem, and in particular the *-
adjoints there should be relative to the measure |V|m. Here is a quick proof of our
present symmetric case.

The matrix V'@ is diagonalizable with real eigenvalues. One obvious reason is
that V-1Q = L™Y(— LV 'L) L where L:= (—Q)z, so that V'@ is similar to the (-, )
self-adjoint matrix (—LV™'L). (But of more significance to us is that V- IQ is
symmetric relative to the signed inner product {f, Vg)>.) It is a trivial consequence
of the fact that each §; < 0 that 0 is not an eigenvalue of V7'Q.

Suppose now that V'Q f = Af for some A < 0. Then

exp (—A@,) f(X,) isalocal martingale bounded on [0, 7;]. (2.3)

The optional-stopping theorem applied at times 7¢ and 7} now shows that (with f*
denoting the restriction of f to £+, as usual)

II'f*=f~ and exp(@")fr=eMf*, sothat G'ft=Af". (2.4)
Let ¥ (respectively, ¥,) be the smallest subspace of ¥~ containing all eigenvectors

of V1@ corresponding to negative (respectively, positive) eigenvalues. It is now clear
that

dim (7)) = |E*|, dim (%) = |E, (2.5)
and that f€¥, implies II'f*=f~ and G+f+ = (V1Qf)", (2.6)
and it is easily checked that
fe?, gev, imply that (f,Vg) =0=4&(f9g). (2.7)
Write the decomposition ¥" = ¥ ® ¥, as f = f, +f,, and define
foi=f [oi=fa. (2.8)
For f*,g" €, define f~:=IT"f*, g~:= IT*g", and then set
SLgD0e=+LVg), E(fT.97):=8(f.9), (2.9)

noting that f* = f,, f_ = 0. Make the analogous definitions with pluses and minuses
interchanged.
All the rest s plain sailing.

(¢) The differential equation for IT*
The most obvious way of calculating IT* from the probabilistic problem is via the
fact that for se B~ and jeE*, we have II*(i,j) = Fi(i,0), where F; is the unique
function on K x (— 00, 0) such that

0 .
(%w)ﬁ}(z,cp): a@,wmqm k) =0, (2.10)

where Fj(n,0) = 0;, (ne£") and Fj(-, —o0) = 0. Solving (2.10) via separation of
variables is effectively the same as the methods used in §§2a, b.

(d) Non-spectral methods; the Riccati equation

It is important to find methods of calculating IT* and G* which do not entail
finding the spectral (eigenvalue-eigenvector) breakdown of V'@ and then
reassembling the components. If V1@ partitions as

A B)

oy (2.11)

y1Q = (

Phil. Trans. R. Soc. Lond. A (1991)
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Some aspects of Wiener—Hopf factorization 597

then (1.7) shows that (in all cases, not merely in the symmetric case which we are now
studying) IT* satisfies the Riccati equation

O+ IT*A +DIT* + IT*BIT* = 0. (2.12)

Moreover (Williams 1982) IT* is the (componentwise) minimal non-negative solution
of (2.12). This idea may be used to give an alternative proof of Theorem 1. The
various ‘Picard’ and Newton-Raphson techniques available for solving (2.12)
numerically all focus attention on ‘two-dimensional’ Green’s function repre-
sentations of IT" such as

It = J e!?(C'+ IT*BIT") !4 dt = J ! (DHIT"B) (1 gHARBIT) (. (2.13)
0 0

In very special situations, Rogers & Williams (1984) were able to utilize a differential
equation analogue of (2.12) in the continuous state-space case. The current discussion
obviously echoes ideas in stochastic control theory (Whittle 1990, and references
therein), but it is not easy to make a direct link, and what are still lacking in the
present Wiener—Hopf context are extremality criteria.

3. A Riemann-Hilbert problem
(@) The simplest example

In discussing this example to indicate something of the flavour, we shall not fuss
about the functional analysis of precise domains of definition of operators and forms.
We consider the situation when

E=R wewc<ﬁw=hﬁm,

8(00) = =00y = 3 [ £/ ds. Vi) = sen o)

For 6 e R\{0}, the function f,, where
fim |6 tcos Ox+ 6 tsinbx, if x>0,
O 17/ if x<0,

is a bounded solution of V7'Qf, = —10%*f,. We would like to calculate II* (in this
example, a stochastic kernel) from the fact that II'f; = f; for 6 R\{0}.
Let Ht:={2eC:§(z) >0}, H:={zeC:&(z) = 0}. (3.1)

Now, for x < 0 and z in H, define

Pa(2) = j e IT* (x, dy), (3.2)
[0, )

so that ¢, is analytic on H* and continuous on H. We rephrase the IT*f = f;
property as the ‘Riemann—Hilbert problem’

RO —i0" . (0)] = 0] e, O R\{0}. (3.3)
We shall see how to solve this to obtain a result of N. Baker (unpublished):

I (x,dy) = H(x,y)dy, where II(x,y) = (2lzly)}/n(x+y?).

Phil. Trans. R. Soc. Lond. A (1991)
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598 D. Williams

This formula for I1(x,y) was also obtained by Rogers & Williams (1984) by showing
that the Riccati equation (2.12) takes the form of the Poisson equation

LA (z,y) = —(4n/2)  (laly) (< 0,y > 0)

in the present context, IT being the minimal non-negative solution.
We want G'f, = —10%, for 6 R\{0}, and this tells us that G*f* = 3(f*)” but also
that functions f* in the domain of " must satisfy a condition

J( U= Oy =0

The operator G* must be self-adjoint relative to the (-, -}, product, and we have

o= [rew- [ [ roaensoaa,
where At(x,y) = 2n Xay) (Iny—Inx)/ (2 —2%) (x> 0,y > 0).

(b) A more general problem

For pedagogic purposes (as the French would say), we shall — to avoid all technical
difficulties — impose additional assumptions on the situation studied in London et al.
(1982 a). By so doing, we destroy the perfect tie-up with Krein’s spectral and inverse
spectral theory of strings discovered there and developed further in a fine paper by
Rogers (1983). (For Krein’s theory, see Dym & McKean (1976).) Our purpose here is
the different one of seeing how the Riemann—Hilbert aspects of our problem relate
to the factorization of V'@ and of finding a reasonably explicit formula for IT*. To
achieve this, we need only make a slight modification of London et al. (1982a).

Here is the situation which we are going to study. We take

E=Ror K =[a,0), where —o0 <a<0O0.

For z in K, we shall take V(x) = sgn (x), the value V(0) being irrelevant. Because we
shall concentrate on IT* and G, it is notationally convenient to place 0 in £* and not

in £-, so we take
Et=1[0,00), E-=EN (—00,0).

We suppose given a continuous strictly positive function p on £~ such that for e £,
[Yp(x)dx < 0. We extend p to £ by taking
p=1 on (0,00).

The assumption that p = 1 on (0, 00) is necessary to make our complex analysis work.
For the purposes of this paper, we take

gd = Lfgpdx, 8(f.g) = ff’g’dx,

so that we want
(Qf) (%) = 3p(x) "' f"(x), xeB\{0}.

A function fin the domain of ¢ must have continuous derivative at 0, and in the case
when K = [a, 00), we insist that f also satisfies a non-trivial boundary condition
c.f (@) —cyof(a) =0 where ¢;,¢, > 0. (I am not going to become involved in the
corresponding precise domain of &. As far as that goes, I have not been absolutely

Phil. Trans. R. Soc. Lond. A (1991)
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Some aspects of Wiener—Hopf factorization 599

precise about the domain of @ either. Functional analysts must be careful for a
number of reasons: the functions f, will never be in L*(p dx), for example.)

For 6 e R\{0}, we can find a unique bounded function f, on ¥ such that f is in the
domain of @, with f'(—o0) =0 if £ = R, and such that

Qfy = —30°Vfy, f3(0)=1.

(Probability theory shows that boundedness is the proper restraint on f.) The
function f, is positive and increasing on £~. We shall of course have

foy) = f4(0) cos Oy + 0 1sin Oy, yek™.

If p,(x€ £7) is again defined via (3.2) (but for our current I1(x, *), of course), we find
that in analogy with (3.3),

RUS(0) =107, (0)] = fo(x), O R\{0}. (3.4)

A Riemann-Hilbert problem is essentially one in which one is given a domain D
in the complex plane, with boundary B, and three functions a(*),b(*),c(*) on B and
one wishes to find all functions ¥ analytic in D with continuous extension to B such
that

R[{a(0)+1ib(0)} P(0)] = ¢(6) on B. (3.5)

Now B may have isolated ‘bad’ points at which some of the functions a(*),b(),c(*)
are discontinuous, and ¥ is only required to have continuous extension to the
remaining ‘good’ points of B, and (3.5) is only required to hold at good points. For
our problem, D = Hand B = R U {00}, and the boundary point oo of B is a bad point.
Since the triple (a(:),b(‘),c(*)) can be multiplied by a continuous never-zero
function, it may or may not be the case that 0 is a bad point for our problem. (The
tndex for our problem is always zero.)

(¢) A4 result from complex analysis

Instead of following explicitly the classic treatment of Riemann—Hilbert problems
given by Mushkhelishvili (1946), we shall, as in London et al. (1982 a) let the structure
of our problem lead us through. In particular, the problem of calculating G* forces
us to consider the solution % of the homogeneous Riemann-Hilbert problem
corresponding to (3.4), and the structure of 4 is closely connected with the spectral
structure of . The function » dominates everything.

Adopting this approach means that we shall need only the following facts from
complex analysis. Suppose that « is a real-valued harmonic function on H* with
continuous extension to a set ¢! which contains all but countably many points of the
boundary R of H*. Suppose further that for some constant 4 in (0, c0), we have

lu(z) < A(1+z]) for zeH,
and that, moreover,

sup{|u(0)|:0e G} < 0. (3.6)
Then, for z = a+if in H*,
_1 Pu(6)do
u(z) = 71:J-Rm——————(e_a)z_|_ﬂ2+bﬁ' (3.7)

for some b in R and

+ba (3.8)

IJ (14 60a) (a—6)+ 052 u(6)dO
T)r

ve)=g O—af+p>  1+0°

Phil. Trans. R. Soc. Lond. A (1991)
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600 D. Willeams

defines the unique conjugate function (modulo an additive constant) such that u+ v
is analytic on H*. Standard properties of the Poisson integral as in (say) Lemma
2.11.2 of Dym & McKean (1976) mean that (3.7) follows from the following lemma.

Lemma. Let u be a real-valued harmonic function on H* such that for all but
countably many 6 in R,

lim wu(z) =0,

Ht32->6
and that for some A in (0, 00),
lu(z)] < A(1+1z2]) for ze H*.
Then there exists a constant ¢ in R such that w(z) = ¢ff whenever z = a+iffe H".

This result is well known, though rarely mentioned in the standard literature. But
see Theorem 6.5.4 of Boas (1954). Here is a simple proof which will ease your worries
about z = 0 (which is potentially a bad point in our context).

Proof. For z=a+if in H" with |z| < R and for 0 < ¢ < 7, define

2BR(R?*—|z|*)sing
(R o= o) +

PR,p,2):=
The Poisson-integral formula for the semicircle
[—R,R] U {Re":0<p<m}

implies that u(z) = fP(R,¢, 2) u(R e'?) dep.

0
Now fix z; = a; +if; and 2z, = a,+if, in H*. Then, as R~ oo,
Bl PR, @, 20) = ;" PR, @, 2,) = O(R™)
uniformly over ¢. Hence
Bt ulz) = fy  u(z,) = O™,
and the result is proved. O

It is a simple exercise to modify the argument to establish (3.7) and (3.8) when
(3.6) is replaced by the ‘natural’ condition

J(1+02 “1|u(6)|d6 < 0.
R

(@) The function h
The structure of IT* is inextricably linked to that of the operator G* and we hope
to calculate G* from the fact that G*f; = —16% on (0, c0). It is plausible that for a
function fon [0, 0), G*f = §(f)”, and this is obvious from the probability theory. I
have to quote from probability theory that the domain of G* is specified by two non-
negative numbers p,, p, and a measure p, on (0, c0) via Feller’s condition

:plf(O)—pzf’(O)—f( )f —f(0)} py(dy) =

Phil. Trans. R. Soc. Lond. A (1991)
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Some aspects of Wiener—Hopf factorization 601

We hope to determine the triple (p,, p,, p,) modulo scalar multiples via the fact that
each f; is in the domain of G'*.

For zin H*, let h(z) measure the extent to which the function y+ e'* fails to satisfy
Feller’s condition, so that

h(z):= Pl—ipzz+J (1—e") p,(dy). (3.9)
(0, )

Then h determines (p,, p,, p,), and A is analytic in /" and continuous on H. Moreover,

R(h) > 0 on H" and R(h) > 0 on H. Thus, in H*, arg (k) takes values in (—ir,ir). The

fact that f; satisfies Feller’s condition gives us the homogeneous Riemann—Hilbert

problem
R{[fp(0)—i07']h(0)} =0, O R\{0} (3.10)

or arg h(6) = —arctan [6f,(0)]

except perhaps at 0 and at (at most countably) many points at which # = 0. The
bounded function arg (k) is now determined in H* by the Poisson-integral formula
(3.7) with b = 0 and the conjugate function In|A| is determined on H* modulo an
additive constant. Hence 4 is determined on /H modulo a multiplicative constant.
This argument, essentially due to J. F.C. Kingman (unpublished), was given in
London et al. (1982a).

Note that 4 is real on the imaginary axis and that for a variety of reasons,

h(a+if) = b(—a+ip), a+ifeH. (3.11)

(e) Total monotonicity of p,

I now quote one of the central results from London et al. (1982a), namely that the
measure p, for our problem has a totally monotone density relative to Lebesgue
measure : for some measure J on (0, 00),

p,(dy) = dyf e " J(dr). (3.12)
(0, )

For our current special problem, this fact derives from the self-adjointness of @
relative to (-, - ) in a manner reminiscent of Reuter (1956) and Kingman (1967). See
also Rogers (1983) for a complex-analytic explanation combining classical fluctuation
theory with the theory of Pick functions.

The algebra in London et al. (1982b) shows how the total monotonicity of p, is
profoundly related to the self-adjointness of G~ relative to (-, -)>_, the measure J
arising from the spectral projection-valued measure for ¢~. (However, the fact that
{+,*>_is not an L*(m) inner product makes the fact that J is a positive measure
require extra structure present in our problem.)

(f) Some simple estimates
We need the following facts:

the measure J is non-zero; (3.13)
for xe £,
0 < fylx <f,, 0) sech (20z4,), (3.14)

where A4, := [inf{p(w):x < w < L} >

the even function 49»—>f(,(0)is decreasing in |4]. (3.15)
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602 D. Williams
Proofs of (3.13) and (3.15) are left to you.
Proof of (3.14). Let xe B, let I, denote the interval [z, 3x], and, for uel,, define
go(u):= cosh 04 ,(u—x).
Then, on I, both g, and f, are positive, and
Gofs—1095) = O°fo9,(p—A%) > 0.

Since, also, (90fs—fo90) (x) = fy(x) = 0,
we see that f,/g, is non-decreasing on I, whence
Jo(@) _ fo3%) fo(0)
x) = < < . O
T = g0 S athe) S cosh (014

Remark. Result (3.14) is probabilistically obvious.
From (3.9) and (3.12), we have

h(z) = pl—ipzz—f izK(dr)’ where K(dr):= r~1J(dr). (3.16)

0.y TIZ
If z = a+if e H, we therefore have

Blr+p)+a? 1J o+ 2 K(dr),

R{h(2)} = p,+p, f+ (Hﬂ)zMgK(dr) Zpitpfty N

(3.17)
so that inf (R{k(z)}:ze H'; |zl = 1) > 0.
If p, # 0, then [27A(z)| - o0 as |2| >0, while if p, = 0, then, for 0 <|z| < 1, we have

+7) K(d 1 (7K(d
pose s, o

whence inf (R{z71h(z)}:ze H; 0 < |2| < 1) > 0.

R{zh(z)} = f

(g) Solving for IT*

Fix x in E~. Recall the definition (see (3.2)) of ¢, on H, and note that |p,| < 1 on
H. Define

Y. (2) = —izh(2)  p,(2), ze€ H\{0}, (3.19)
pausing to note that for real u > 0,
. j K(dr)\™? _
V. (in) = (——-i—p +J ) e T (x, dy). 3.20)
/“ i 2 o 0.0 (2, dy (

Since |p,| < 1 on H, the estimates obtained in subsection (f) show that ¥, which is
analytic in /f* and continuous on H\{0} satisfies

|V, (2) < A(L+z]) (zeH) (3.21)
for some constant A in (0, o). However, it is immediate from (3.4) and (3.10) that
RY,(0) = fylx) B(O) (0 R\{0}),
where R(0):= 0*R{n(O) 1} (0 R\{0}).
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Some aspects of Wiener—Hopf factorization 603

We note that E(0) and f,(£) are even in 6 ; recall (3.11). It is obvious that R(6) = 0(6?),
while from (3.14), fy(x) tails off exponentially in . Hence, by the Poisson-integral
formula, we have, for some b in R,

1
Y, (in) = J Rﬁé‘i_ez () R(6) A0+ bu. (3.22)

Because of the probabilistically obvious fact (proved analytically at Lemma 24 of
London et al. (1982a)) that IT*(x, -) attaches no mass to the singleton {0},

fe‘”yﬂ+(x,dy)~>0 as  pu— 00,

and it is now clear that from (3.20) and (3.22) that b = 0. It is further clear from
(3.20) and (3.22) that IT*(x,dy) has a smooth density II(x,y) relative to Lebesgue
measure on [0, c0) which is the convolution of two functions F and H, on [0, o),
where

F(y):=p1+p25(y)+f e "V K(dr) = p,+p,0(y) +p.y, 00) (y>0), (3.23)

(0, )

=2 |

(0, 00)

el f,(x) R(0) de} (y > 0). (3.24)

Note that while F takes only positive values, H, may take both positive and negative
values.

The lesson is that the convolution description discovered by McGregor (1988,
1990) for Example 4b below holds generally. The somewhat puzzling relation
between this convolution description and other convolution descriptions of IT*
known from probability is something I hope to discuss in a sequel.

(h) Symmetry
In analogy with (1.5), we have
' I (y,dx) = H(x,y) p(x)de  for yek*, xek~. (3.25)

This is no longer so obvious!

4. Examples, methods, and their interrelations
(@) The canonical example
Let us make a minor generalization of the simplest example in §3a by taking
E=R p=1onEt=[0,0), p=c*onE =(—00,0), where ce(0,0).
Then fy(x) = (c|f])* exp (c|0)x) for x < 0. We find from (3.10) that
arg {h(0)} = —sgn (0)Ima, where 0<oa <1, tanima=c¢™'. (4.1)
Hence, we may take

h(z) = (—iz)*, sothat p,=p,=0 and F(y) = p,y,©)=y"*/T(1—a).
(4.2)
Then R(0) = |0]™*cosina, so that, by an easily justified calculation,
H,(y) = 2n7 ¢ 'I'(2—a) R{(c|x| + iy)* %} cos ina.
Phil. Trans. R. Soc. Lond. A (1991)
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604 D. Willvams
s CNEWEN (N
mce du ,37 8u+ﬂ - (8u+ﬁ)1+yu1—yy
v ~ ] B yl—a(clxl)a—l
a — o—2 =
we have L wHelel +ily —w)ldu (1—oa) (cll +iy)”

Hence the convolution formula for IT* works out easily to yield Baker’s formula
(Rogers & Williams 1984 ; McGill 1989a):

2¢%|x|*y** sin ima
T(cPa® + y?)

It (x,dy) = I(x,y)dy, where I[l(x,y)= (4.3)

McGill’s reason for calling this the canonical example is explained below. For the
simplest example, we have ¢ =1 and o = 1.

(b) An example with reflecting boundary
We now take
E=[—-1,0), p=1onE*=[0,0), p=ctonE =[—1,0),
and impose the boundary condition f’(—1) = 0 on functions in the domain of ¢. Then
[o(x) = {cOsinh cO} *coshcO(x+1), z€k,
arg{h(0)} = —arctan (¢ *cothcl) (0eR).
We may take h(z) = —izlMda—izen ) > /T (1 —ia—izem™),
whence p, = p, =0 and F(y) = (3¢ 'n)*/T'(1 —a) (sinh mc~'y)*, where tanima = ¢t
a€(0,1). Note that arg h(6) ~ —sgn (0) ina as |6] - oo, and that
h(z) ~ (—iz)* as |z|>00 in H,
Fly) ~y/T(1-a) as y|0.
(Compare (4.1) and (4.2).) One can carry out the convolution calculation in this case
(McGregor 1988, 1990) to obtain

¢ (sin 3m|x|)* (sinh imcly) ~* cosh (3me1y)
sin®inx +sinh? inc 'y

This result for IT was first obtained for the case ¢ = 1 in London et al. (19825) and for

general ¢ by Baker (1984).

I(z,y) = sin imer. (4.4)

(¢) Conformal mapping; elliptic functions

The formula (4.4) was guessed by Neil Baker (then my research student) via a
heuristic inferred from comparing examples (a) and (b) in the (then known) case when
¢ = 1. He used contour integration (Baker 1984) to show that II(x, y) as at (4.4) does
satisfy the equation IT*f} = f; (0 R\{0}). That the solution of this equation is
unique was known from London et al. (1982a).

McGill (1989a) makes precise an application of conformal mapping which works
(and justifies Baker’s heuristic) in a limited set of cases which, in the way of
mathematics, contains several cases of great importance. McGill is thereby able to
use conformal mapping to derive (4.4) rigorously from what he calls the canonical
case (4.3). The conformal mapping effects changes of variable which map the
calculations in example (a) into those done by McGregor in example (b).
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Some aspects of Wiener—Hopf factorization 605

McGill’s really striking use of the ‘Baker heuristic’ is to solve the case when
E =[a,b], where ¢ < 0 < b and we impose reflecting boundary conditions at @ and
b for functions in the domain of ¢, where p = 1 on (0,5) and p = ¢? on [—a,0), and
where, finally, V is the sgn function. As had been conjectured by Baker, the solution
is a combination of elliptic functions similar to the combination of hyperbolic and
trigonometric functions at (4.4), these latter functions being limiting cases of the
doubly periodic elliptic functions. For a different viewpoint on the heuristic, see also
(McGill 19895).

(d) The Riccati equation
Suppose now that

E=R or[a ©)or[a,b] (a<0<b),

that p is any strictly positive continuous function on £ and that V = sgn on £. We
no longer require that p = 1 on (0, ). Rogers & Williams (1984) showed that under
these circumstances, for xe £~ ye E*, we have

I (v, dy) = H(2,y) ply) dy, 1T (y,d) = p(@) I (x,y) d,
where the function IT on B~ x K™ satisfies the Riccati equation:

(@, +@Q,) I(x,y) = — const. p(y) q(x) (4.5)

for some non-negative functions p on E* and ¢ on K-, which are certain linear
functionals of II. In the cases considered previously, p is the density relative to
Lebesgue measure of the measure p,.

If, for example, £ = R, > —1 and ¢ > 0 and

B xf, if x>0,
plx) = —c* ), if x <O,
then scaling properties may be combined with (4.5) to yield
H(w,y) = Klaly' /(" 2> +y**)  (xeE™,yeB"),
where a is the unique solution in (0, 1) of the equation
sin ((1—a)d) = csin (ad), where &:=mn/(2+/f),
and K =n"Y2+ f) ¢*sin (ad)
(see Rogers & Williams 1984). As McGill (1989a) states, and as Rogers and 1 were
aware, one could also solve this case via classical Wiener—Hopf factorization of an
asymmetric stable process. Note that when g = 0, we are back with example (a).
McKean (1963) had solved the case when f=1and ¢ = 1.
Though equation (4.5) can only be used to calculate II(x,y) in the presence of
something akin to scaling properties, it clearly throws a lot of light on when solutions
may be obtained via Baker-McGill change of variables, and it is interesting to look

afresh at McGill (1989a). Of course, equation (4.5) has the potential for multi-
dimensional generalization which other methods do not.

(e) An example with absorbing boundary
We now take (with subscripts ‘abs’ used to highlight the absorbing case)
By =[—1,0), paps=1o0n B, Paps = c®on K~
Phil. Trans. R. Soc. Lond. A (1991)
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606 D. Williams

where ce(0,00), and impose the absorbing boundary condition f(—1)=10 on
functions f in the domain of Q. Then, with o:= 2n~'arctan (¢™!), as usual,

¢~ Y(sin in|z])* (sinh inc~1y) "> cos i
sin?lnx +sinh? inc 'y

I, (x,y) = sin 3o (4.6)

(see Baker 1984 ; McGill 1989a).

(f) A three-dimensional example

Let
E=R? E"={wek:|lw=>1}, E ={wek:|w <1}

Let ce (0, 00), and define
p=ctonE, p=1onE', V=—1lonkE , V=1onE"

For nice functions f and g on F, we take

gy = J Jgpdw, E(f.g) = fgradf (grad g) du,

so that @ = 1p7'A.

I now explain how to begin the study of this case, concentrating only on the ‘radial
part’ of the problem. The information we obtain about the radial part can be utilized
in the study of the angular part; but that is a story for another occasion.

The ‘radial’ definitions are obvious. We define

Erad = [O’ OO)> Eiad = [ ,OO), rad [O 1)
and, for functions f and ¢ on [0, 0), we define (omitting 4mw!)

<f’ g>ra,d = fgprad d?’,

[0, )

1 1
bah) =5 serar=3] ooy .1

[0, c0) [0, c0)

where f':=df/dr, ete., and
Praa = T°A(r), where A=1onk}, A=c*onk,,.
The reason for the final expression at (4.7) is that for ‘test functions’ f and g,
rfg = (f) (rg) = (fg)".
We see that we need to take
Qraag = 3A(r) 17N (rg)"

To be sure, this is a convoluted way to arrive at the radial part of the laplacian!
For a function ¢ on [0, ), define g on [—1, c0) by

(@g) (u):= (u+1)g(u+1).

Then with @, as in §4e,
Qrad = (p_lQabsgv; (48)
Phil. Trans. R. Soc. Lond. A (1991)
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Some aspects of Wiener—Hopf factorization 607

and, formally at least, this ‘similarity’, a special case of the Doob A-transform, shows
that for xe K4 and ye K,

rad» .
Hrad( ) {x I a.bs( —1,?/—1)y_1}?!2dy, (49)

where IT,, is as at (4.6). I skip for now rigorous proof of (4.9). As a first step towards
convincing yourself, you should check that

f I (e, dy) = 1, x€][0,1).
[1, 0)

Of course, if f* is a radial function on E* for the three-dimensional problem, then if
fT(w) = R*(lv|) for v in E*, we have for w in £~

(T () J e d) ), 2=l
[1, 00

5. Concluding remarks

I have tried to convey something of the flavour of the non-probabilistic aspects of
part of probabilistic Wiener—Hopf Theory. Because I have written the paper for non-
probabilists, I have not discussed the relation between the problems considered
here and classical fluctuation theory. (Bingham 1975; Greenwood & Pitman 1980;
Rogers 1983, 1984 ; McGill 1989 a) make excellent reading for this, and include better
complex analysis.

The complex analysis in this paper has been adequate for the theory but good fun
only in the examples; and do read McGill (1989a, 1990). While complex analysis is
exactly right for fluctuation theory and for many other applications of Wiener-Hopf
theory (Noble 1959), its use for our problem, while great fun, seems to me contrived
in that it applies only to ‘cooked’ problems (some of which are, however, very
important). The heart of the matter is equation (1.8).

The title is designed to allow a sequel ‘Some further aspects of ...’, which may be
more appropriate to a specialist-field journal. The ‘Wiener—Hopf theory with noise’
which Joanne Kennedy and I (1990) have begun to study might well prove
interesting, and will involve further complex analysis and hard explicit calculations.
Of course it is the case that doing explicit calculations is more in the spirit of 19th-
than 20th-century mathematics. But such explicit answers as have been obtained
have been invaluable for making, and for shooting down, conjectures.

My debt to co-authors of various papers is self-evident. I thank Joanne Kennedy for her help. I
began this work at Swansea, and it is a pleasure to acknowledge the continuing help I receive from
there.
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